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Abstract 

Seminvariant vector and modulus give conditions for the 
possible reflections of a superposition structure with atomic 
positions related to the multiple implication function. This 
concept naturally leads to the 21 formula. 

The concept of seminvariant vector and modulus was intro- 
duced in fundamental direct-method papers by Hauptman 
& Karle (1953, 1956, 1959; Karle & Hauptman, 1961). The 
seminvariant vectors and moduli have been tabulated either 
for primitive cells (International Tables for X-ray Crystal- 
lography, 1974) or for conventional cells (Giacovazzo, 
1974). 

On the other hand, the multiple implication function 
(MIF) published under a variety of names by Simpson, 
Dobrott & Lipscomb (1965), Ellison & Levy (1965), Hamil- 
ton (1965), Mighell & Jacobson (1963) and Pavel~ik (1986), 

I s ^ ] 1/2 
Q(r) = min (1/mi)P(r-S,r) , 

L. i=I 
(1) 

can be regarded as a general approach to the interpretation 
of the Patterson function, P(r), on the basis of symmetry; 
mi is the multiplicity of the symmetryinteraction (Simpson, 
Dobrott & Lipscomb, 1965), P ( r - S i r )  is the implication 
function (Buerger, 1959), S is the symmetry operator and 
s is the number of space-group operators excluding those 
of centring. The symmetry of the MIF was studied by 
Zimmermann (1988) and the procedure for the generation 
of the MIF symmetry was developed by Pavel~ik (1988, 
1990). 

The important property of the MIF is that its unit-cell 
volume is a fraction of the crystal cell volume (in some 
cubic groups both types of volumes coincide as a limiting 
case). In the polar groups the unit cell has infinitesimal 
thickness in the polar directions so that plane or line cells 
are obtained. The extreme case is the P1 space group where 
the MIF cell is reduced to a single point. The MIF described 
in the crystal unit-cell axes has non-standard centring points 
which coincide with permissible translations of the cell 
origin (equivalent origins, to) (Pavel~ik, 1990). 

For the idealized Patterson function (with 8-function 
peaks), the MIF gives the complete structure but without 
distinguishing the equivalent origins. In other words, the 
idealized MIF can be regarded as a superposition of crystal 
structures shifted by permissible origin translations (O is 
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the number of equivalent origins): 

O 
Q(r)=  ~ p(r+to) .  (2) 

o=1 

In polar groups, the to are infinitesimal quantities in polar 
directions and integration should be carried out so that a 
projection of the structure is obtained. 

If the atomic positions are known, the Q(r) can be 
calculated by 

O 
Q(r)=(1/V) ~ ~, FHexp[-2~riH.(r+to)] 

o=1 H 

= (1/V) ~ FH exp (-27ri l l .  r) 
H 

An analysis of the individual non-standard centring types 
shows that the sum in square brackets is either zero or O 
depending on H. This means that in the superposition 
structure, in comparison to the crystal, some reflections are 
present and some systematically absent. The condition 
defining possible reflections is just seminvariant vector and 
seminvariant modulus. Equation (3) can be rewritten as 

Q(r) = (O/V)  ~ Fr~ exp (-2~-iH. r), (4) 
H~H s 

where H' belongs to the structure seminvariant reflections. 
For example, in space group Pi, the seminvariant vector 
is (h, k, l), the seminvariant modulus (2, 2, 2) and the poss- 
ible reflections for the MIF superposition structure are those 
with h=2n, k=2n, l=2n; in space group P21, the 
seminvariant vector is (h, k, I), the seminvariant modulus 
(2, 0, 2) and possible reflections are h = 2n, k = 0, I = 2n. 

Because Q(r) can be calculated directly from ]F[ 2 [(I)], 
three possible applications are offered for crystal structure 
determination: 

(i) An inverse Fourier transform of Q(r) could lead to 
one-phase structure seminvariants applicable in direct 
methods. The same approach was proposed for a single 
Harker section by Ardito, Cascarano, Giacovazzo & Lui6 
[1985; see also Cascarano, Giacovazzo & Lui6 (1984) and 
Burzlaff (1984)] and was tested on a heavy-atom structure 
with good results. But instead of a full Fourier transform, 
the largest peaks of a Harker section were used in the actual 
procedure. The method suggested here has the advantage 
of combining information from all Harker regions. 
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(ii) Cascarano, Giacovazzo, Lui6, Pifferi & Spagna 
(1987) tested successfully the possibility of refining a rep- 
resentative of a subset of atomic positional vectors compat- 
ible with Harker vectors on the basis of seminvariant reflec- 
tions only. This approach is equally well applicable to the 
peaks of the MIF and represents a promising way to elimi- 
nate false peaks of the MIF. 

(iii) A repeated Fourier calculation, according to (4), 
using experimental IFol and the phase obtained from the 
peak positions of Q(r) could lead to the superposition 
structure. The latter possibility is currently under experi- 
mental verification. 

In the less-favourable case, when using the symmetry 
sum function (Pavel~ik, 1989) and the rough approximation 
that the square of Q(r) is proportional to the MIF superpo- 
sition structure (equal-atom case), the inverse Fourier trans- 
form is 

Fn~n"-~ C S Q2(r) exp (27rill. r) dr 
v 

- - c  $ y. ZIF~I 2 exp[-ETriK.(r-Rir-ti) 
Vi=l K 

x exp (2"n'iH. r) dr 

= C  ~ ~.lFK12exp(21riK.t,) 
i=1K 

x ~ exp [-2"rr iK( | -  Ri)r] exp (2-n'iH. r) dr. (5) 
v 

The integral has non-zero value only if K ( I - R i ) =  
H, so that 

Fn~Hs~--C ~ ~]Fxl2exp(2rr iK. t i )  (6) 
i = !  K 

and the summation is over all K = H ( I - R i )  -~. R~ is the 
rotational matrix and t~ is the translation vector. Obviously, 

(6) is only an alternative form of the ~1 formula (for a 
review see Hagek, 1977). The fully comparable result can 
be obtained for the point and origin-removed Patterson 
calculated with [El 2-1  as coefficients. 

I thank the referee for calling my attention to the studies 
by Ardito et al. and Cascarano et al. 
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